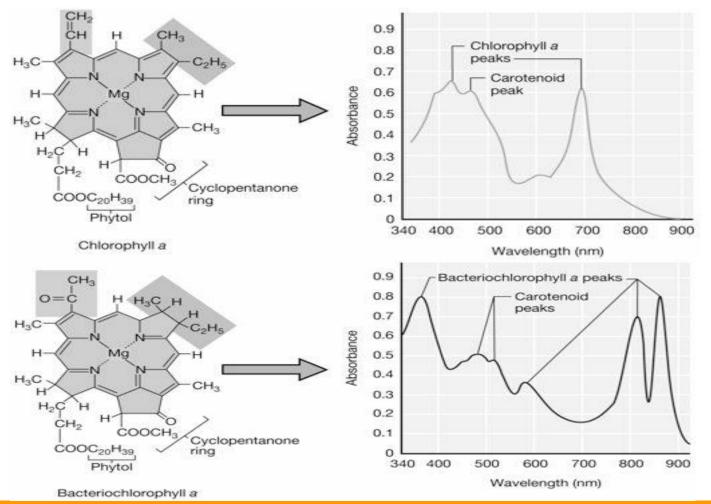


Screening of electricity producing profile of various photosynthetic microorganisms

Dr. Bilge Hilal CADIRCI

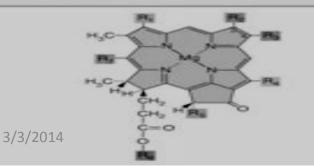
Bioengineering Department Gaziosmanpasa University Tokat, Turkey



- Plants use a substance called chlorophyll to absorb the sun's rays
- Bacteria contain bacteriochlorophyll, which allows them to also photosynthesize.

PHOTOTECH: BIOSENSORS & BIOCHIPS

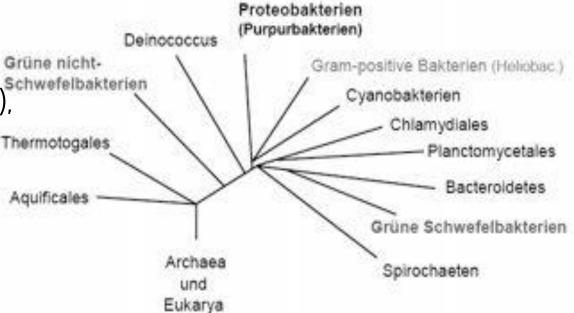
TRAINING SCHOOL ON "PHOTOTECH FOR BIOSENSORS AND ENERGY", 21-25 OCTOBER, AMARILIA HOTEL, VOULIAGMENI, ATHENS, GREECE 2013


Pigment	в,	R.,	R.,	R.	P.,	R.	В,	In vivo	Extract (methanol)
Bacterio- chlorophyfl æ (purple bacteria)	—с—сн ₃	CH3*	CH2CH3	—сн,	-с-о-сн _э	P/G	g≠—H	805 830-890	771
Bacterio- chlorophyll # (purple bacteria)	- <u></u> с-сн ₃	-CH3 ^c	=с-сн _а н	—сн ₃	-с-о-сн,	р	11	835-850 1020-1040	794
Bacterio- chlorophyll c (green sulfur bacteria)	н -с-сн ₅ он	—сн,	C ₂ H ₅ C ₃ H ₇ ^d C ₄ H ₉	—С ₂ Н ₃ —СН ₃	H	F	—СН3	745-755	860-669
Bacterio- chlorophyll c _a (green nonsulfur bacteria)	н с-сн ₂ он	—сн,	C ₂ H ₅	—сн _э	_H	\$	CH3	743	667
Bacterio- chlorophyll a (green sulfur bacteria)	н ссн _э он	—сн ₃	C ₂ H ₅ C ₃ H ₇ C ₄ H ₈	—с ₂ н ₃ —сн ₃	H	۲	—н	705-740	654
Bacterio- chlorophyll e (green sulfur bacteria)	н ссн _з снз	—с—н	C ₂ H ₅ C ₃ H ₇ C ₄ H ₉	$-C_2H_5$	H	×	-CH3	719-726	646
Bacterio- chlorophyll g (heliobacteria)	_с_сн ₂	—сн ₃ *	C ₂ H ₅	—сн ₃	-с-о-сн,		—н	670, 788	765

⁴P. Phytyl ester (C₃₀H₃₀O-); F. farmesyl ester (C₁₀H₂₀O-); Gg. geranylgeranicl ester (C₁₀H₁₇O-); S. stearyl alcohol (C₁₀H₂₀O-).

No double borst between C_3 and C_4 additional H atoms are in positions C_3 and C_4

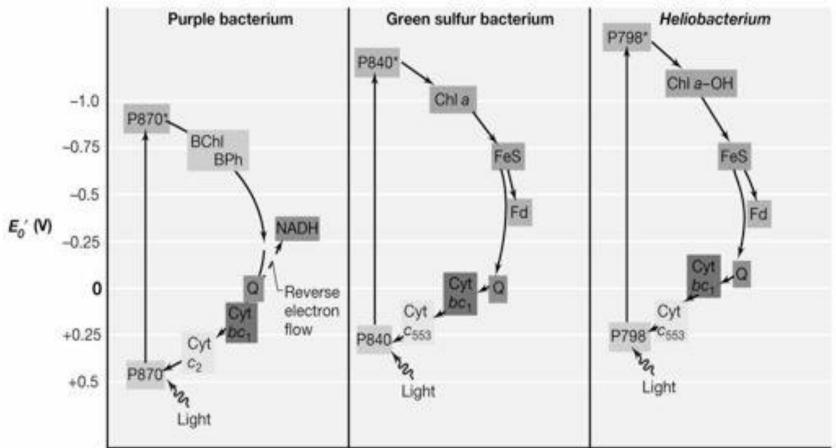
"No double bond between \mathbf{C}_3 and \mathbf{C}_4 an additional H atom is in position \mathbf{C}_3


"Bacteriochiorophylis r. e. and e consist of isomeric mintures with the different substituents on R₂ as shown.

- proteobacteria (purple bacteria),
- green nonsulfur bacteria,
- green sulfur bacteria
- the Gram-positive heliobacteria

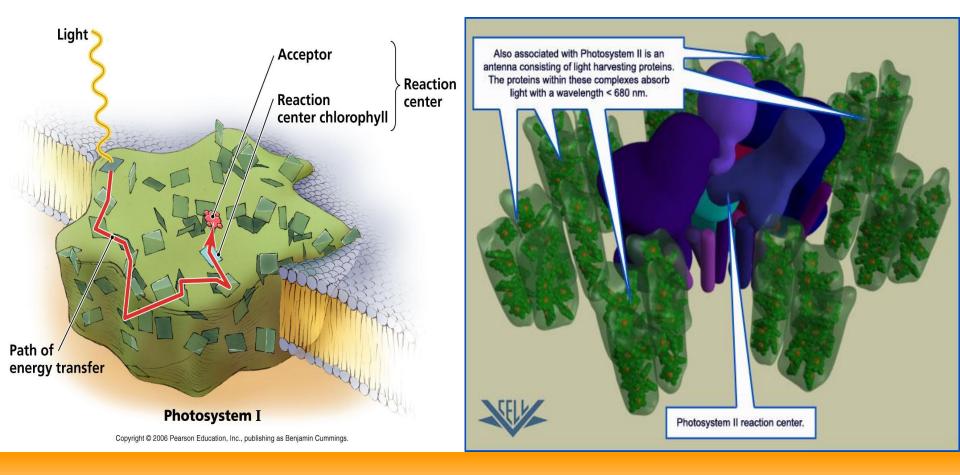
Phylogenetic affiliation of phototrophic bacteria

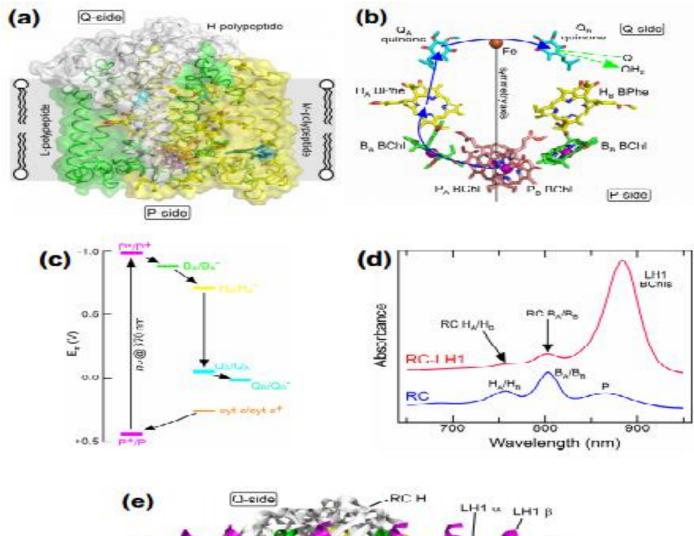
- The purple bacteria and green nonsulfur bacteria synthesize a nonoxygen-evolving type II photosystem;
- the green sulfur bacteria and
- heliobacteria have a homodimeric type I photosystem;
- Cyanobacteria contain a type I photosystem and an oxygen-evolving type II photosystem, both of which are heterodimeric.

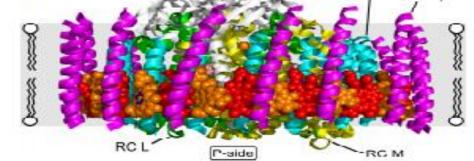

Physiological properties of phototrophic Bacteria

	Cyanobacteria	Purplebacteria	Green Sulfur bacteria	Green non- Sulfur bacteria	Heliobacter
PS-type	PS I and II	PS II	PSI	PS II	PSI
Pigments	Chl a (b)	BChl a, b	BChl a, c, (d, e)	BChl a, c	BCHI g
Autotrophy	+	(+)	+	+/-	-(?)
Physiology	Photoauto- Lithoauto-	Photoauto- Lithoauto- Organohetero-	Photoauto- Lithoauto-	Photoauto- Lithoauto- Organohetero-	Photoauto- Organohetero-
CO ₂ fixation	Calvin-cycle	Calvin-cycle	Reductive TCA	3OH-Propionate	None ?
Electron donor	H ₂ O	H ₂ S/ organic	H ₂ S	H ₂ / organic	Organic

Adapted from Fuchs and Schlegel 'Allgemeine Mikrobiologie'

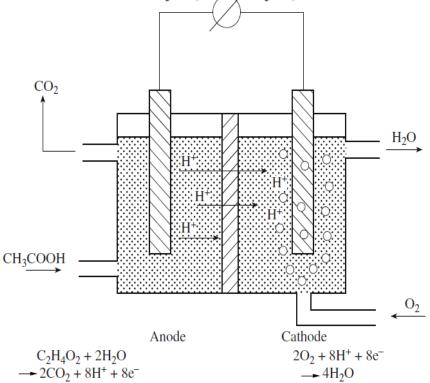





Comparison of electron flow

• Photosynthesis takes place on the surface of the cell

Magis, 2010, Shedding light on surface-assembled photosynthetic systems Langmuir 27:10282-10294

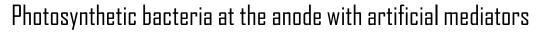


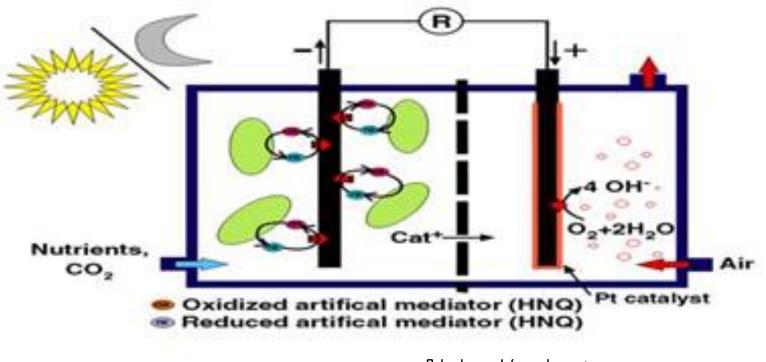
 Solar energy reaches the Earth at the rate of the 178,000 TW of which 0.2% to 0.3% is harnessed by microorganisms

Microbial fuel cells, a type of bio-electrochemical system, directly capture electrons

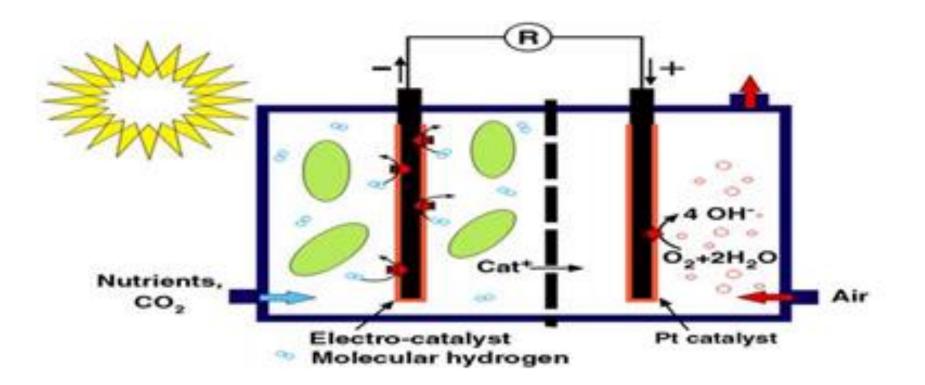
 the oxidation of a carbon source occurs at the anode while the reduction of O2 to H2O occurs at the cathode

Species studied by the researchers in anode chamber.


S. no.	Species	References
1.	E. coli	Potter [14], Zhang et al. [15], Habermann and Pommer [22], Zou et al. [59], Park and Zeikus [60], Qiao et al. [61], Xi and Sun [62]
2.	Shewanella oneidensis DSP10	Ringeisen et al. [16], Biffinger et al. [18,19]
3.	Shewanella oneidensis MR-1	Manohar et al. [17], Biffinger et al. [18]
4.	Shewanella putrefaciens	Kim et al. [1], Park and Zeikus [21]
5.	Pseudomonas aeruginosa	Habermann and Pommer [22], Rabaey et al. [23–24]
6.	Geobacter sulfurreducens	Bond et al. [26], Reguera et al. [27,31], Trinh et al. [33]
7.	Geobacteraceae	Holmes et al. [29], Bond et al. [30]
8.	Geobacter metallireducens	Min et al. [32]
9.	Dessulfobulbus propionicus	Lovley et al. [53]
10.	Geothrix fermentans	Lovley et al. [54]
11.	Paracoccus denitrificans and Paracoccus pantotrophus	Rabaey et al. [55]
12.	Rhodopseudomonas palustris DX-1	Xing et al. [56]
13.	Klebsiella pneumoniae	Lewandowski et al. [57,58]

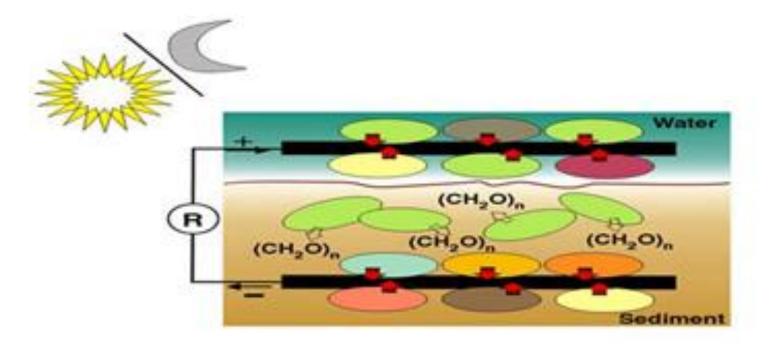


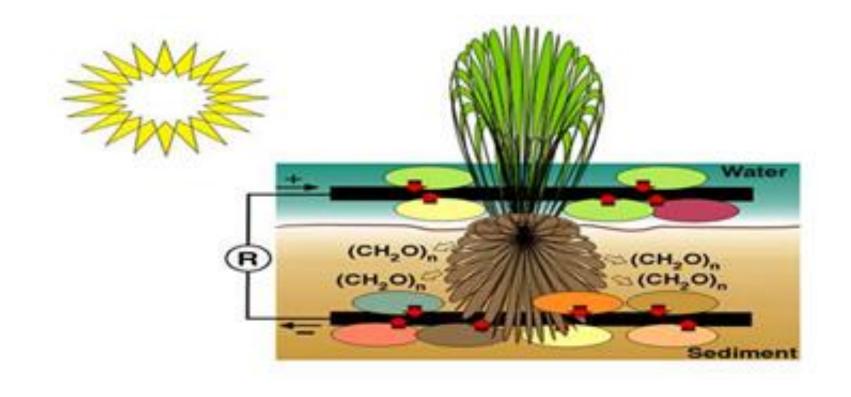
 The photosynthetic microbial fuel cell (PMFC) is a bioelectrochemical system capable of converting sunlight into electricity based on the exploitation of biocatalytic reactions within active microbial cells



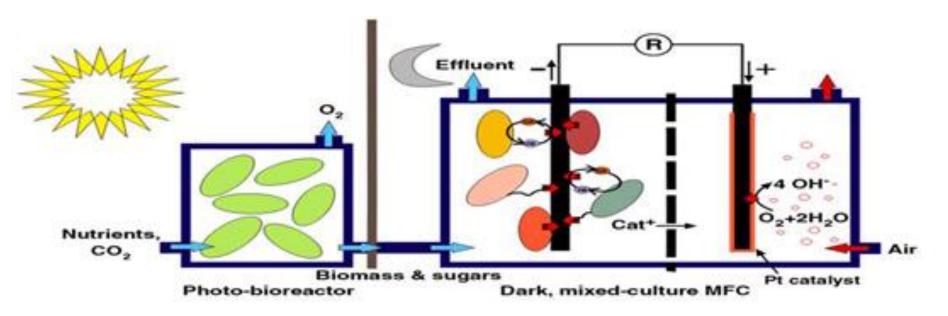
2-hydroxy-1,4-naphtoquinone

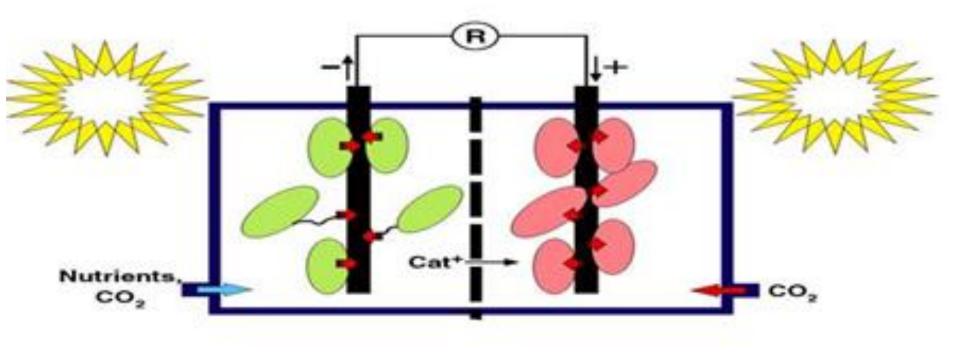
•



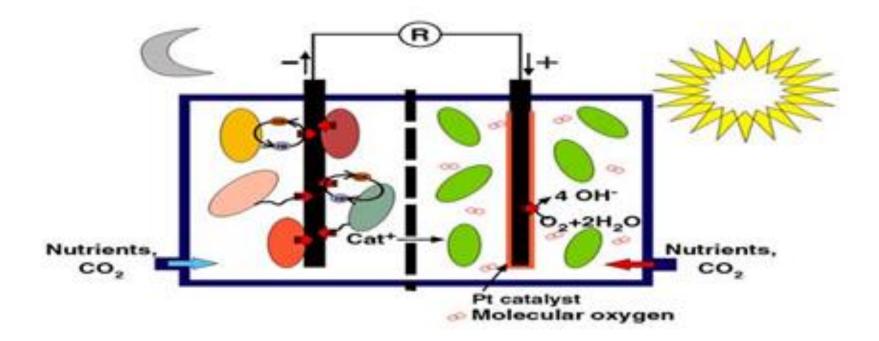

Photosynthesis coupled with mixed heterotrophic bacteria at the anode

• Synergism between phototrophic microorganisms and mixed heterotrophic bacteria in sediments

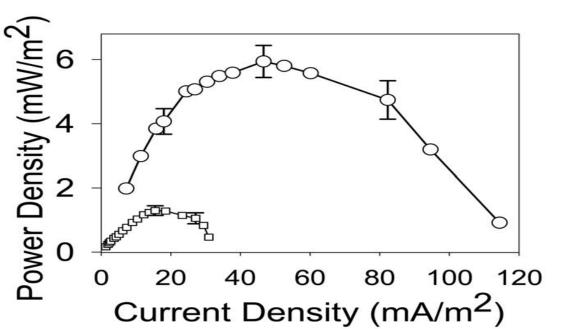




• Ex situ photosynthesis coupled with mixed heterotrophic bacteria at a dark anode



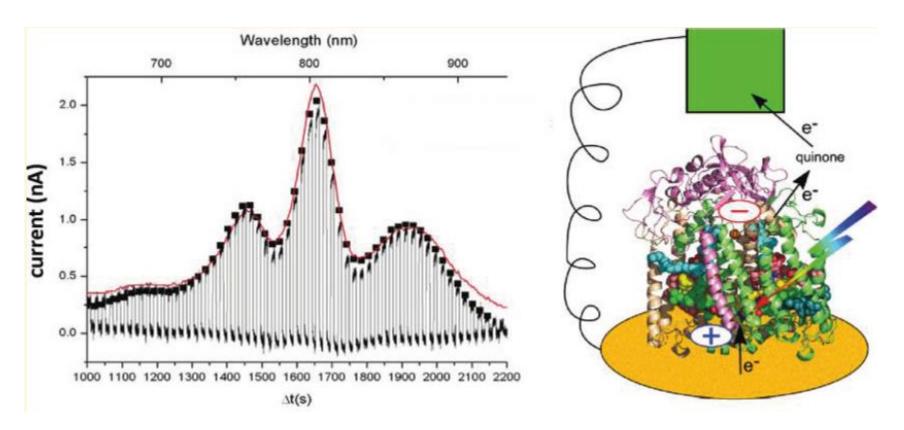
• Photosynthesis at the cathode to provide oxygen


)13

Electrogenic yield of diverse cyanobacteria genera and mixed pond consortium.

Culture	Yield, % ¹
Pond consortium	0.304±0.009
Calothrix	0.265 ± 0.006
Pseudoanabaena	0.165 ± 0.008
Synechococcus	0.155 ± 0.006
Ananbaena	0.149±0.015
Phormidium	0.149 ± 0.015
Nostoc	0.136±0.013
Lyngbya	0.130±0.016
Spirulina	0.099±0.09
Synechocystis	0.075±.008
Leptolyngbya	0.051 ± 0.015

¹The yield is shown as a mean of three 24 h illumination cycles with a standard deviation. Pisciotta JM, Zou Y, Baskakov IV (2010) Light-Dependent Electrogenic Activity of Cyanobacteria. PLoS ONE 5(5): e10821. doi:10.1371/ journal.pone.0010821



Effect of anode material on electron harvesting. Power density curves (normalized by the cathode surface area = 9.6 cm2) measured for MFC with mixed photosynthetic biofilm consortium formed on anode coated with polypyrrole (%) or nanostructured polypyrrole

Pisciotta JM, Zou Y, Baskakov IV (2010) Light-Dependent Electrogenic Activity of Cyanobacteria. PLoS ONE 5(5): e10821. doi:10.1371/journal.pone.0010821

• Thank you for your attention!!!

References

Pisciotta JM, Zou Y, Baskakov IV (2010) Light-Dependent Electrogenic Activity of Cyanobacteria. PLoS ONE 5(5): e10821. doi:10.1371/journal.pone.0010821

Rosenbaum M., He Z., Angenent, LT. 2010, Light energy to bioelectricity: photosynthetic microbial fuel cells. Current Opinion in Biotechnology, 21:259–264